Fake New Detection Challenge

Abstract -

The challenge was about classifying the news to be fake or not. We have to do binary
classification task (true, false) also in a six-way classification task (pants on fire, false,
mostly false, half true, mostly true, true).

Dataset -

The dataset that was used is LIAR++ which is an extension of LIAR having claims from
PolitiFact, justification corresponding to each claim has been added as an extension.
Some of metadata associated with each claim are subject, speaker, job, state, party,
context. The dataset is fairly balanced in terms of classification labels.
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Methodology -

e Preprocessing data - Since the claims and its justification are natural language
expressions, the basic preprocessing involves removal of stop-words, though
techniques like lemmatization and stemming doesn’t works good for our task.

e Use of Part of Speech Tagging - POS has been used to categories the words
that makes sense grammatically. It is used to form/show relationship with
adjacent and related words in a phrase, sentence, or paragraph. Spacy works
better than nltk POS tag.

e GloVe embedding - Pretrained vector representation is used for words having
dense vector representation of length 100. Embedding matrix is used as initial
weights to generate the embeddings for each input statements.



e Bi-directional LSTM - Bi-LSTM has been used to model the architecture.
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Results -

e Surprisingly, SGD works better in our case as compared to RMSprop and Adam.
e Early stopping is a good idea because our model overfits easily.
e | tried LSTM, bi-dir LSTM, GRU and bi-dir GRU and LSTM network seem to beat
GRU as far as accuracy is concerned.
Bi-directional LSTM gives max
Accuracy 6 Way Classification -
o Validation Acc - 28.816 %
o TestAcc- 26.28 %
Accuracy Binary Classification -
o Validation Acc - 65.26 %
o TestAcc-62.03 %



Classes No of Misclassification
Pants-fire 9

False 227

Barely-True 47

Half-True 178

Mostly-True 361

True 112

Classes No of Misclassification
False 187

True 294

Clearly, for 6 way classification “Mostly-True” got highly misclassified and class “True”
got highly misclassified for binary classification.

Boosting the accuracy further -

After doing data exploration few things that | noticed is that -

Firstly the “claims” and “justifications” as too long sentences, careful
pre-processing will help in the identification of major key words. After this
creating an embedding of dense representation (like length=300) might help.
Adding contextual attention layer to LSTM network (didn't found good
implementation in keras).

Ensembling - creating and average ensembling model by averaging the
probabilities obtained from Istm model + normalized scores/probabilities of the
meta data features.
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Percentage of Statements as Lies
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Below given few plots of % Lies of different classes from meta-tags. Using this might

help because usually these informations are lost in deep networks.
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Library used -

Keras
Matplotlib
Numpy
Pandas
Spacy
NLTK
Pickle
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