MapReduce

Vraj Patel < Kishen Gowda -+ Rushil Shah + Saumitra Sharma < Mrinal Anand




What is MapReduce and How does it work?

e Itis a programming model suitable for processing huge data parallelly.

e [t works intwo phases:
o Map Phase
o Reduce Phase

e Input to each of the above phase are key-value pairs.
e The four steps of execution: splitting, mapping, shuffling, and reducing.



Now,
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(key, value) ?



(“word”, count)



(“MapReduce”, 1)
(“MapReduce”, 1)
(“MapReduce”, 1)



(“MapReduce”, 3)
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Mapping

e Every mapper thread has a corresponding buffer and set of files it will map
e When MR_EMIT is called -> (key, value) stored in buffer

e When buffer is full -> sort and flush



Mapping - Scheduling Policies

e Allocate as per given order in Round Robin fashion
e Allocate as per given order in Sorted Double Round Robin fashion

e Makespan Minimization - Longest Processing time (LPT) [4/3 Approx.]

Performance on Uneven workload:

Scheduling Policy Average time (in s)
Round Robin 88
Sorted Double Round Robin 86

LPT 76




Sorting And Partitioning

e External Sorting Algorithm using Min-Heap

e Partition the (key, value) pair based on user-defined Partition function to corresponding reducer
files



Mapper files

Min Heap

Hash Partitioner

7

Reducer files




Complexity Analysis

e Sorting and Partitioning
o No. of chunks = n/b
o Time for heap construction = O(n/b)
o Time to find minimum= 0O(1)
o Time for insertion = O( log(n/b) )
o Total time required = O( n*log(n/b) )



Sorting and Partition - Problem

e Limit on number of open files per process:
o Linux: 1024
o  Windows: 512
e Solve by merging pair of files till number of files become less than the limit

e Conduct the merging concurrently, use semaphores to limit the number of open files while
merging

(1100 files)
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Benchmarks

e Word Count
e Mutual Friends
e Matrix Multiplication



Matrix
Multiplication



Matrix Vector
(m,n) (n,1)

Does not fit Fits in the
in the main memory main memory



(key, value) ?



(i, vec, * m,



(1, vec * m,

) The it" row of the matrix m



VeC m

e) helement of i row of the matrix m



(i, vec, * m,

) The j" element of vector v



But what
happens after
reduction?



e All the values with same value of i,
I.e., with same row number, collect
together and add up.

e That's exactly what we want!



Mutual Friends



(key, value) ?






01:[1, 4, 5] 01:]0, 3, 5}
04 :[1, 4, 5] 13:10, 3, 5}
05:[1, 4, 5] 15:10, 3, 5}



01:[1, 4, 5]
10:10, 3, 5}



Keys

01:11, 4, 5]
01X : 10, 3, 5]

We only consider them in
the sorted order



Values

01:[1,4, 5]
01:/0, 3, 5]



Mutual Friend

01:[1, 4, 5]
01:[0, 3, 5]



Evaluation of
MapReduce
on Benchmarks
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Time in Seconds
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Time in Seconds

Mutual friend (Mapper=8, no. of files=16, rows=3)
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Time in Seconds

Matrix Multiplication (Reducer=4, no. of files=16, rows=3)
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MapReduce Project Timeline
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Project Presentation Work

Fix leaks, warnings and errors
Concurrent DS implementation
Mapper Scheduling schemes
Multi-threaded Map

Multi-threaded Reduce

Buffered Key Value store

Benchmark for Performace Evaluation
Basic Prototype

Data Structure Design

Theory
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Work Division

Vraj Mapreduce.h -> Multithreaded Mapper, quicksort, Model
Kishen Sorter.h -> External Sort, Files Compressor, Scheduling policies
Mrinal Mapreduce.h -> Multithreaded Reducer, Metrics, Plots
Saumitra Complete Word Count Benchmark, Matrix Multiplication Benchmark
Rushil Complete Mutual Friends Benchmark (3 iterations), Model




References

1. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1 (2008):
107-113.

2. https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concu
rrency-mapreduce

3. http://pages.cs.wisc.edu/~remzi/0OSTEP/Educators-Slides/Andrea/lecture24
-mapreduce.pdf

4. Operating Systems: Three Easy Pieces, Remzi H. Arpaci-Dusseau, and
Andrea C. Arpaci-Dusseau, Arpaci-Dusseau Books, August 2018 (Version
1.00)

9. http://stevekrenzel.com/finding-friends-with-mapreduce

6. https://userweb.ucs.louisiana.edu/~vvr3254/CMPS598/Notes/Matrix-Vector%
20Multiplication%20by%20MapReduce-v2.pdf



https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce
https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce
http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/lecture24-mapreduce.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/lecture24-mapreduce.pdf

