MapReduce

Vraj Patel < Kishen Gowda -+ Rushil Shah + Saumitra Sharma < Mrinal Anand

What is MapReduce and How does it work?

e Itis a programming model suitable for processing huge data parallelly.

e [t works intwo phases:
o Map Phase
o Reduce Phase

e Input to each of the above phase are key-value pairs.
e The four steps of execution: splitting, mapping, shuffling, and reducing.

Now,
An example. ..

Shuffling

. Reducin
Mapping g
Input Splits it
p p Welcome , 1 best, 1
to, 1
MapReduce, 1 .
Welcome to MapReduce is, 1
is, 1 is, 2
Input B Final
is,
this is MapReduce 13, 1l MapReduce, 1 Wil ge OUtPUt
MapReduce, 1 MapRed 1
Welcome to MapReduce apreduce,
this is MapReduce
MapReduce is the best L pReuea best, 1
the , 1 is, 2
MapReduce , 3
MapReduce is the, 1
MapReduce, 1 the 1 this , 1
is, 1 & . to, 1
this , 1 Welcome , 1
this, 1
the best
to, 1
the, 1
4 to, 1
best, 1
Welcome , 1

Welcome , 1

(key, value) ?

(“word”, count)

(“MapReduce”, 1)
(“MapReduce”, 1)
(“MapReduce”, 1)

(“MapReduce”, 3)

O
| -
-
e
O
)
—
L
O
| S
<

Mapping

Output

Reducer

1 %)
;)
: =
: e
' —
: (%)
' (&)
' =
1 °
: o)
; ~

o | "

g "

= _

S |

oo F :

T o @

! Co- &

& ! >

o

g N _

F=EE ~ !

o _

o :

w]
A R D S Lo
P o=
b VR
o | e = o~ (o) < g
. | I I | I Lo !
P (B g g g g =
[0!
: -
1 A Do
el 8l &8l &8lls |
: G| =] | =] =]]
1 = = =} =} =] '
; 3| 4] 3] 2] M "

Mapping

e Every mapper thread has a corresponding buffer and set of files it will map
e When MR_EMIT is called -> (key, value) stored in buffer

e When buffer is full -> sort and flush

Mapping - Scheduling Policies

e Allocate as per given order in Round Robin fashion
e Allocate as per given order in Sorted Double Round Robin fashion

e Makespan Minimization - Longest Processing time (LPT) [4/3 Approx.]

Performance on Uneven workload:

Scheduling Policy Average time (in s)
Round Robin 88
Sorted Double Round Robin 86

LPT 76

Sorting And Partitioning

e External Sorting Algorithm using Min-Heap

e Partition the (key, value) pair based on user-defined Partition function to corresponding reducer
files

Mapper files

Min Heap

Hash Partitioner

7

Reducer files

Complexity Analysis

e Sorting and Partitioning
o No. of chunks = n/b
o Time for heap construction = O(n/b)
o Time to find minimum= 0O(1)
o Time for insertion = O(log(n/b))
o Total time required = O(n*log(n/b))

Sorting and Partition - Problem

e Limit on number of open files per process:
o Linux: 1024
o Windows: 512
e Solve by merging pair of files till number of files become less than the limit

e Conduct the merging concurrently, use semaphores to limit the number of open files while
merging

(1100 files)

N S I R | S Y s | —
|- | |

Merge \/
| | |

(550 files)

Benchmarks

e Word Count
e Mutual Friends
e Matrix Multiplication

Matrix
Multiplication

Matrix Vector
(m,n) (n,1)

Does not fit Fits in the
in the main memory main memory

(key, value) ?

(i, vec, * m,

(1, vec * m,

) The it" row of the matrix m

VeC m

e) helement of i row of the matrix m

(i, vec, * m,

) The j" element of vector v

But what
happens after
reduction?

e All the values with same value of i,
I.e., with same row number, collect
together and add up.

e That's exactly what we want!

Mutual Friends

(key, value) ?

01:[1, 4, 5] 01:]0, 3, 5}
04 :[1, 4, 5] 13:10, 3, 5}
05:[1, 4, 5] 15:10, 3, 5}

01:[1, 4, 5]
10:10, 3, 5}

Keys

01:11, 4, 5]
01X : 10, 3, 5]

We only consider them in
the sorted order

Values

01:[1,4, 5]
01:/0, 3, 5]

Mutual Friend

01:[1, 4, 5]
01:[0, 3, 5]

Evaluation of
MapReduce
on Benchmarks

Time in Seconds

500

400 -

300

200

100 A

Word-Count (Reducer = 8, no. of files=16, rows=3)

-~
-~
-~
-~

——

w-

T

4

T

5

Number of Mappers

~

Time in Seconds

500

400 -

300

200

100 A

Mutual friend (Reducer=4, no. of files=16, rows=3)

w-

T T

- 5
Number of Mappers

~

Time in Seconds

Mutual friend (Mapper=8, no. of files=16, rows=3)

500

400 -
300‘ \\

200

100 A

T T

1 2 3 3 5 &
Number of Reducers

-~
=]

Time in Seconds

Matrix Multiplication (Reducer=4, no. of files=16, rows=3)

500

400 -

300

200

100 A

-~
-~
e
-
-~
-

-
—
-

—
————
—
—
J—

w-

=
v
o
~
[=-]

Number of Mappers

MapReduce Project Timeline

1w im ©6m YID 1y

Project Presentation Work

Fix leaks, warnings and errors
Concurrent DS implementation
Mapper Scheduling schemes
Multi-threaded Map

Multi-threaded Reduce

Buffered Key Value store

Benchmark for Performace Evaluation
Basic Prototype

Data Structure Design

Theory

all

Sep 1
2019

Sep 15

Sep 29

Oct 13

Oct 27

100

80

60

40

20

Work Division

Vraj Mapreduce.h -> Multithreaded Mapper, quicksort, Model
Kishen Sorter.h -> External Sort, Files Compressor, Scheduling policies
Mrinal Mapreduce.h -> Multithreaded Reducer, Metrics, Plots
Saumitra Complete Word Count Benchmark, Matrix Multiplication Benchmark
Rushil Complete Mutual Friends Benchmark (3 iterations), Model

References

1. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1 (2008):
107-113.

2. https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concu
rrency-mapreduce

3. http://pages.cs.wisc.edu/~remzi/0OSTEP/Educators-Slides/Andrea/lecture24
-mapreduce.pdf

4. Operating Systems: Three Easy Pieces, Remzi H. Arpaci-Dusseau, and
Andrea C. Arpaci-Dusseau, Arpaci-Dusseau Books, August 2018 (Version
1.00)

9. http://stevekrenzel.com/finding-friends-with-mapreduce

6. https://userweb.ucs.louisiana.edu/~vvr3254/CMPS598/Notes/Matrix-Vector%
20Multiplication%20by%20MapReduce-v2.pdf

https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce
https://github.com/remzi-arpacidusseau/ostep-projects/tree/master/concurrency-mapreduce
http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/lecture24-mapreduce.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/lecture24-mapreduce.pdf

