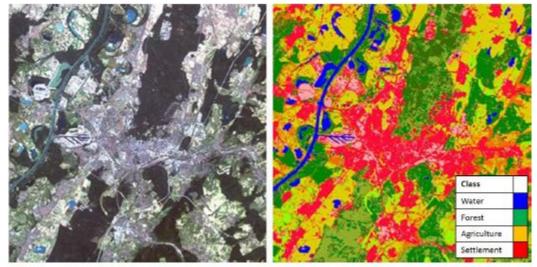
Inter-IIT Tech Meet

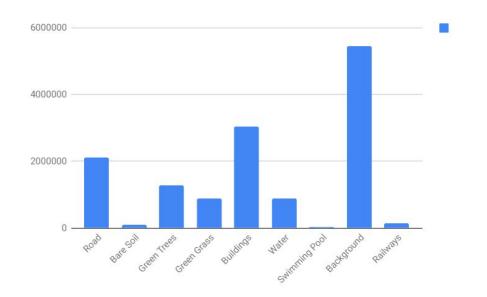
The Eye in the Sky

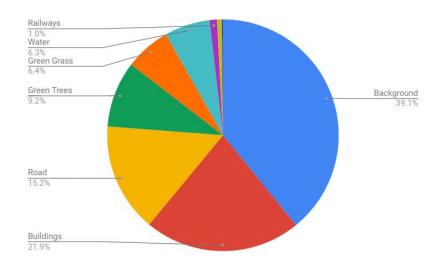
Mrinal Rushil Shah Rithwik Kukunuri

Problem Statement

• In this challenge, we are required to implement a satellite image segmentation model. So, given an image we have to predict the class of each pixel in image.




Fig. Example of a Satellite Image Classification


Approach

- Basic approach to this problem was FCN (Fully Convolutional Network).
- FCN uses CNN as a powerful feature extractor while replacing fully connected layers with convolution.
- Modified Version of U-net was used to tackle this segmentation problem.
- Less Amount of Training Data.

Dataset

- The image consists of 8 classes grass, roads, buildings, bare soil, trees, railways, water bodies, swimming pools.
- Unbalanced Classes in the Dataset.

Our Journey

Pre-Processing

- Tried Normalizing between -1 to 1 but it didn't worked out for us.
- Normalizing the data between 0 to 1 using standard normalization technique.
- Generating Patches from a given image, so that the feedforward is less computationally expensive (96×96).
- Padded the image before feeding forward.

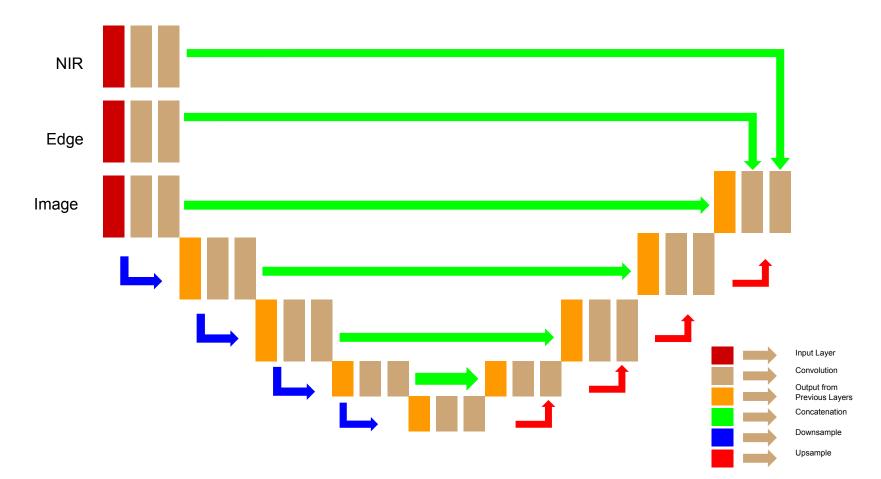
Models

Model	Accuracy
U-Net	76

Models

Model	Accuracy
U-Net	76
One vs All Classifiers using U-Net	67

Models


Model	Accuracy
U-Net	76
One vs All Classifiers using U-Net	67
Resnet + U-Net	81

Feature Generation

- Canny Edge Detection was used but the results weren't satisfactory.
- Local Binary Transform was used to detect texture.
- Sobel and Robert Cross Edge Detection was used.
- Resultant Images were used as an extra channel.

Model Architecture

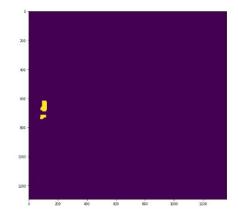
Hyper Parameters

- Activation Functions
 - ELU
 - ReLU
- Optimizers
 - RMS Prop
 - AdaGrad
 - o Adam
 - SGD
- Loss Functions
 - Categorical Cross Entropy
 - Custom loss function
- Metrics
 - Accuracy
 - o IOU

Reflectance Indices

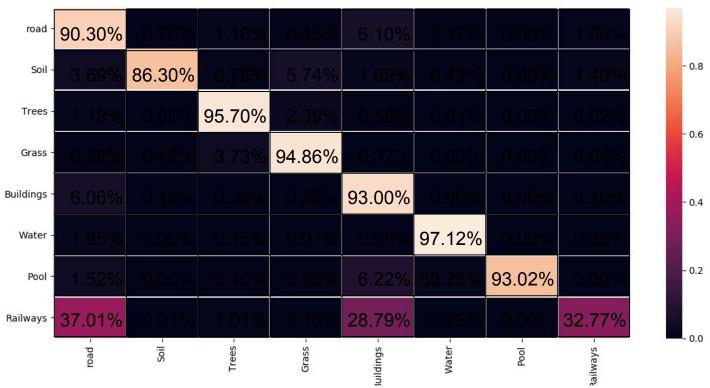
- Used NIR channel to identify some classes solely on the basis of pixel value.
- Due to the reflectance property of water, indices such as NDWI (Normalised Difference Water Index) shows high intensity value for water class.

$$NDWI = \frac{GREEN - NIR}{GREEN + NIR}$$


- NDWI values
 - $\circ \geq 0.7511$ for swimming pool.
 - 0.576 0.7511 for water.

Morphological Transformations

- NDWI index shows *False Positive* for some buildings due to similarity of specific heat of metal roof and water.
- To remove these false positive points we used two morphological transformations
 - Erosion
 - Dilation



Results

$$OverallAccuracy = \frac{TotalMatchingPixels}{TotalPixels} * 100$$

Kappa Coefficient	0.9028
Overall Accuracy	93% (pixel wise)

HeatMap

Thank You!